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Abstract—Data races are a particularly nefarious type of
bugs that can affect the correctness of parallel software. Data
races are inherently non-deterministic, making them extremely
challenging to detect and fix. High performance computing (HPC)
applications are particularly vulnerable to data races as they are
generally large complex applications involving massive levels of
parallelism. Detecting data races in large scale, complex, and
highly parallel applications can be nearly impossible without the
help of domain specific race detection tools.

We present the OpenRace framework, the only open source
project aimed at providing the foundation needed to build a fast
and precise static race detection tool for LLVM based languages.
OpenRace is designed to be extensible and allow new parallel
programming frameworks to be easily modelled without the
need to write an entirely custom race detection engine, while
also providing the flexibility to model complex domain specific
features. We show the core components of the framework, and
demonstrate how those components have been used to create
a race detection tool for OpenMP. OpenMP is the standard
choice for shared memory parallelism in the majority of HPC
applications, and involves a number of complex features that can
be challenging to model statically.

The OpenRace tool has thus far passed 149 of the 172 C/C++
cases in DataRaceBench version 1.3.2, outperforming all dynamic
tools and ranking second place overall among the tools with
results published by the DataRaceBench authors.

Index Terms—OpenMP, Data Race Detection, Static Analysis

I. INTRODUCTION

Data races are among the most challenging types of bugs
in software. Reasoning about complex timings and thread
interactions is an inherently difficult problem. Data races
are non-deterministic by nature, making them notoriously
difficult to detect and debug. It is not uncommon for software
developers to spend weeks or even months tracking down and
understanding the root cause of a data race.

High performance computing (HPC) applications are par-
ticularly vulnerable to data races. HPC applications are gen-
erally highly complex and parallel systems at the forefront
of hardware capabilities. OpenMP has been the de facto
standard for on node parallelism in the HPC community for
decades. OpenMP makes it easy to write highly parallel code

that can take full advantage of accelerators such as GPUs.
Although OpenMP hides most of the low level intricacies
of writing parallel programs, there are no built-in safeguards
against data races. It is left up to the application developer to
ensure that OpenMP programs are data race free. Writing even
simple parallel programs correctly can be challenging. Writing
complex and highly parallel HPC applications can seem like
a herculean task.

There are only a few production-ready data race detection
tools for OpenMP, such as Intel Inspector [1], TSAN [2],
Archer [3], ROMP [4], and Coderrect [5], most of which
are based on dynamic analysis. Despite generating fewer false
positives than static tools, dynamic analysis only analyzes a
single executed path at runtime and can only report observed
bugs. As a result, dynamic tools always miss hidden bugs.
Additionally, repeatedly running dynamic tools with different
configurations and inputs for higher coverage can be time
consuming and exploring every possible program path with
dynamic analysis is practically impossible. On the other hand,
static analysis is perfectly suited for scanning the majority
of a program. Static analysis tools analyze the entire source
code directly, and therefore do not rely on specific hardware
configurations, run time behaviour, or specific inputs. Critical
bugs are often exposed only when some edge case path within
a program is executed, and static analysis is well equipped to
detect these kinds of bugs.

There has been a recent uptick in research in static race
detection tools for OpenMP programs including DRACO [6],
LLOV [7], and OMPRacer [8]. However, most of those works
have focused on verification or analyzing a specific sub-
domain such as parallel loop dependencies. Moreover, few
of these tools are open source and hence are unavailable
to be extended for new features. Our previous experience
on OMPRacer, a closed source static race detector, indicates
the importance of extensibility of such tools as OpenMP is
rapidly evolving and new features are added frequently into the
standard. Thus, since OMPRacer, we have focused our efforts
on developing an open source, highly extensible framework



for static race detection.
In this paper, we present OpenRace [9], a framework for

whole program static race detection in LLVM-based lan-
guages. OpenRace began as an open source redesign of the
closed source Coderrect race detection tool with two main
design goals:

• OpenRace is designed to be highly extensible. In the
past we have developed different static race detection
tools customized for different domains. Over time we
have noticed redundant or similar code repeated across
domains. In the context of race detection, pthread locks,
C++ standard library RAII locks, and even OpenMP crit-
ical sections all behave nearly the same. The OpenRace
framework aims to take advantage of this observation and
create a framework that can be easily extended to support
multiple domains.

• OpenRace is designed to allow complex domain specific
features to be modelled accurately. We identify a set of
abstract operations that are needed for race detection;
Reads, Writes, Fork, Joins, Locks, and Unlocks. The
OpenRace framework provides the core race detection
analyses that operate only on these abstract operations.
Then a specific framework can be modelled by mapping
APIs to the abstract operations. See Table I for an exam-
ple of how API calls are mapped to abstract operations.

OpenMP is the first programming model being modelled
using the OpenRace framework, and although the work is
on going, OpenRace has already been able to model many
OpenMP features more accurately than the original closed
source Coderrect tool. In DataRaceBench 1.3.2 [10], [11],
the most recent version of the popular OpenMP data race
benchmarks developed by LLNL, OpenRace has passed 149
of the 172 C/C++ cases, outperforming all dynamic tools and
ranking second place overall among the tools with results
published by the DataRaceBench authors. We expect the
OpenRace framework to not only surpass the closed source
Coderrect tool in OpenMP support, but eventually be extended
to support pthreads, CUDA, std::threads, and a number of
other domains.

To our knowledge, OpenRace is the only open source
LLVM-based framework for static race detection. The code
is fully open source and being actively developed. The project
includes automated tests, coverage reports, and contribution
guidelines aimed at ensuring quality and lowering the barrier
for outside contributions. It has also been actively maintained
with comprehensive documentation and rigorous code reviews.

OpenRace is publicly available at
https://github.com/coderrect-inc/OpenRace

In the rest of this paper, we first use an example to motivate
our design choice. We then present the detailed design of
OpenRace and its core implementation components, followed
by our modeling of OpenMP features. We will also present our
evaluation results of OpenRace on DataRaceBench, discuss
related and future work.

II. MOTIVATING EXAMPLE

Developing a static data race detection tool that only handles
the common cases may be relatively simple. Although the full
OpenMP specification is huge, the majority of OpenMP usage
likely falls into a small subset of the overall features. However,
bugs often lie in mistakes made when venturing outside of the
common patterns. Therefore, it is vital that data race detection
engines are able to accurately model complex features and
behaviours.

The OpenMP single directive can be used as an example to
illustrate this point. The single directive tells the compiler that
only one thread should execute a block of code. In Listing 1 the
write to global is inside of a block marked with single. This
ensures that only one thread will make this write, preventing
a data race that would otherwise occur on this line.

#pragma omp parallel
{
// Increment global counter by 1
#pragma omp single
{ global++; }

}

Listing 1. Simple Single Race

A naive, but straightforward way to model single for race
detection is to skip races in the same single region. However,
this naive modeling is unsound. Listing 2 shows a hypothet-
ical case where a programmer decided to wrap the update
to global in a function and added nowait to prevent
the code from blocking. However, in doing so, a race was
introduced. Each call to increment_global results in a
single thread updating a shared global variable. The use of
nowait removes an implicit synchronization after the single,
allowing both calls to be made in parallel. Lastly, although
the single clause ensures that only one thread will execute the
single region, the specification does not specify which thread
will execute the single region. This means that one thread may
execute the single region in the first call, while another thread
may execute the single region in the second call in parallel,
leading to a potential data race on global.

void increment_global() {
// Added nowait to remove bottleneck
#pragma omp single nowait
{ global++; }

}

// ...

#pragma omp parallel
{

increment_global();
increment_global();

}

Listing 2. Example showing an accidental data race using single

The naive model of OpenMP single will fail to detect the
race in Listing 2 since at the source code level, there is only
one single region updating global and it is considered to be
race-free by the naive approach. The example shows how bugs
can hide in the edge cases when users have misunderstanding
on some features or look over some interactions in complex
software.



TABLE I
MAP BETWEEN APIS TO ABSTRACT OPERATIONS

Pthread OpenMP Abstract Ops
pthread create kmpc fork Fork
pthread join implicit Join
pthread lock kmpc critical kmpc set lock Lock

pthread unlock kmpc end critical kmpc unset lock Unlock

The OpenRace framework has been built to provide the core
analyses needed for data race detection, while also providing
a base on which more complex domain-specific features can
be accurately modelled.

III. THE OPENRACE FRAMEWORK

The OpenRace framework is built on top of the LLVM core
libraries [12] and takes LLVM’s intermediate representation
(IR) as input. As a result, any language that can be converted
to LLVM IR can be analyzed.

The OpenRace framework can be split into five stages: Pre-
processing, Pointer Analysis, Function Summarization, Trace
Building, and Analysis.

A. Preprocessing

We first preprocess the LLVM IR such that it is easier
to be analyzed. The LLVM compiler framework transforms
the IR by feeding it into a transformation pass pipeline. In
OpenRace, we use a number of the passes provided by LLVM
as well as some self-developed passes. The majority of these
passes are standard compiler optimization passes not specific
to any language or framework and are needed regardless of
the specific code being analyzed. However, in some cases,
preprocessing is used to model domain (language)-specific
features, e.g., C++ virtual table.

For OpenMP programs, we apply an OpenMP specific pass
to create fake duplicate calls to kmpc_fork to inform the
analyzer that multiple threads might be created by a single call.
Listing 3 shows a simplified version of the LLVM IR produced
from the code shown in Listing 2 after preprocessing.

In general, preprocessing is only used for simplification of
the IR. The majority of domain specific modeling happens
in the later phases. Modeling language features during the
preprocessing stage is used only as a last resort.

B. Pointer Analysis

The second step is running a custom whole program
context- and field-sensitive Andersen-style pointer analysis.
Pointer Analysis creates an abstract memory object for allo-
cations in the program, and for each pointer in the program
builds a set of abstract objects to which the pointer could
potentially point to. These points-to sets can be used to
find shared data across threads, and which instructions are
potentially accessing that shared data.

The pointer analysis used in OpenRace employs a special
type of custom context sensitivity, called thread sensitivity, that
allows the analysis to detect shared pointers between threads

while allowing less precise results for pointers within the
same thread. Thread sensitivity is far too imprecise for most
applications of pointer analysis, but that imprecision is what
makes whole program pointer analysis feasible. By tracking
only the information relevant to data race detection, i.e., shared
data across threads, the pointer analysis can therefore be fast
enough to scale to large and complex programs, while still
being precise in the context of data race detection. The details
of thread sensitivity are out of the scope of this paper, but
have been discussed in a previously published work [8].

C. Function Summaries

Function summaries are built by taking LLVM IR functions
and extracting only the abstract operations needed to detect
data races. This is done through language models that map
a specific LLVM instruction to an abstract operation, such as
a Read or a Write. Irrelevant instructions, such as arithmetic
operations, debug markers, or API calls that are known to not
affect data races, can be ignored. An example of this mapping
is shown in Figure 2

These summarized functions serve as a light weight wrapper
around LLVM functions and can directly be used to build the
static program trace in the next phase.

D. Static Program Trace

The main data structure used to detect races is the program
trace. The program trace acts as a statically constructed per-
thread trace of events that over approximate the runtime
execution. The primary difference between a dynamic trace
of events recorded at runtime, and our statically built trace are
the program paths. A dynamic trace contains only one path
through the program, while the static trace collapses all paths
into a single list of events.

The program trace is built by recursively traversing a call
graph generated by pointer analysis. As each function in
the call graph is explored, the function is summarized as
described in section III-C. A static event is recorded for
each operation in the function summary. An event stores
the underlying LLVM instruction, the type of the operation
(Read, Write, Fork, etc), and the context in which the event
was executed. For convenience, the events in the thread trace
also distinguish between different types of call events. Calls
to external functions are marked as extern calls and can be
used as markers for later analyses. For non-extern calls, an
event is added to the trace when the function is called, and
when the function is returned from. These events are called
BeginCall and EndCall respectively. These events can be used
to reconstruct a callstack if needed by later analyses.

Listing 5 shows the resulting program trace for Listing 3.
Each thread in the program trace lists an ID, entry function,
and context for convenience. In reality, traces are more com-
plex. The thread ID cannot always be determined accurately,
and different events within the same thread may have different
contexts. The program trace shown here is simplified to
demonstrate the high-level concepts.
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Fig. 1. An Overview of the OpenRace Framework.

define i32 @main(){
entry:
call void @__kmpc_fork_call(@.omp_outlined.)
call void @copied_kmpc_fork(@.omp_outlined.)
ret i32 0

}

define void @.omp_outlined.() {
entry:
call void @inc()
call void @inc()
ret void

}

define void @inc() {
entry:
%0 = call i32 @__kmpc_global_thread_num()
%1 = call i32 @__kmpc_single(i32 %0)
%2 = icmp ne i32 %1, 0
br i1 %2, label %then, label %end

then:
%3 = load i32, i32* @global
%inc = add nsw i32 %3, 1
store i32 %inc, i32* @global
call void @__kmpc_end_single(i32 %0)
br label %omp_if.end

end:
ret void

}

Listing 3. LLVM IR After Duplicate OpenMP Fork Preprocessing

LLVM Function

%3 = load i32, i32*@global

store i32 %inc, i32*@global

%inc = add nsw i32 %3, 1

call @__kmpc_end_single

Read @global

Write @global

Call @__kmpc_end_single

Function Summary

Fig. 2. Translation from LLVM Functions to Function Summaries

E. Analysis

The Analysis phase contains the actual race detection logic.
Three core analyses make up the default race detection check:

1) Shared Memory Analysis
2) Happens-Before Analysis
3) Lockset Analysis

Each analysis is designed to take the program trace as input

@main summary
-------------
Fork
Fork

@.omp.outlined summary
----------------------
Call inc
Call inc

@inc summary
------------
Call kmcp_global_thread_num
Call kmpc_single
Read @global
Write @global
Call kmpc_end_single

Listing 4. Function Summaries for the IR in Listing 3

and can then be queried for some property. Additional domain-
specific analyses can be added to model features specific to
a particular framework or language. There are a few different
OpenMP specific analyses already included in the OpenRace
project for modeling OpenMP specific features like single,
lastprivate, sections, reduction, and array index analysis for
parallel loops.

1) Shared Memory Analysis: Uses the points-to sets com-
puted by pointer analysis to produce a list of all Read/Write
and Write/Write pairs that access the same memory location
from two different threads. The set of memory access pairs
serve as the target of following analyses.

2) Happens Before Analysis: tracks which events must
happen before other events. This property can be used to
determine two events A and B may occur in parallel, by
determining that neither A nor B have to happen before the
other. The happens-before analysis creates a happens-before
graph from the static trace, where each event is a node
and an edge between two events represents a happens-before
relationship. There are only three base cases where happens-
before edges need to be added. 1) Program order, meaning
events within the same thread must happen in order, dictates
that there should be a happens-before edge between each event
within a thread. 2) Fork events dictate that happens-before
edges from a fork event to the first event on the spawned
thread. 3) Join events dictate that happens-before edges from
the last event on a thread to that thread’s join event.



Thread 0
entry: main
context: [main]

--------
0: Fork Thread 1 // new context [t1]
1: Fork Thread 2 // new context [t2]
2: Join Thread 1
3: Join Thread 2

Thread 1
entry: .omp_outlined.
context: [main, t1]

--------
0: BeginCall inc
1: ExternCall kmpc_global_thread_num
2: ExternCall kmpc_single
3: Read @global
4: Write @global
5: ExternCall kmpc_end_single
6: EndCall inc
7: BeginCall inc
8: ExternCall kmpc_global_thread_num
9: ExternCall kmpc_single
10: Read @global
11: Write @global
12: ExternCall kmpc_end_single
13: EndCall inc

Thread 2
entry: .omp_outlined.
context: [main, t2] // context changed

--------
// Identical event trace as Thread 1
0: BeginCall inc
1: ExternCall kmpc_global_thread_num
...

Listing 5. Thread Trace for the LLVM IR shown in Listing 3

3) Lockset Analysis: can be trivially implemented from the
program trace. Each individual thread trace can be traversed.
Starting with an empty lockset, simply add the corresponding
lock object to the lockset when lock events are encountered,
and remove the corresponding lock object from the lockset
when an unlock event is encountered. Read or Write events
will be associate with the lockset when they are traversed.
During the race detection, we stop reporting on a pair when
the intersection of the two locksets is non-empty.

IV. OPENMP MODELING

Modeling OpenMP features in the OpenRace framework is
ongoing. The majority of the most common OpenMP features
are already modelled. See Table II for a list of modelled
features (green), partially modelled features (yellow), and
features that have yet to be modeled.

Some OpenMP features can be implicitly modelled by the
core OpenRace engine, but the majority need to be explicitly
handled with custom analyses. We show a detailed example of
how OpenMP single can be easily modeled in the OpenRace
framework, and provide high level descriptions of how the
remaining features are modeled.

TABLE II
STATUS OF OPENMP FEATURES MODELED IN OPENRACE

Feature Support Feature Support
omp parallel X sections X
omp for X teams -
omp barrier X target -
master X task -
single X taskwait -
reduction X taskloop 7
atomic X taskgroup 7
critical X simd 7
threadprivate X ordered 7

Entries with a dash indicate the feature is partially
supported

A. OpenMP Single

The power of the OpenRace framework is the ability to write
analyses that work on the static program trace, rather than
LLVM IR directly. Detecting the race in Listing 2 using LLVM
IR directly would be challenging, as at the IR level there
appears to be only one single section. However, in Listing 5
each thread trace has two distinct single regions.

The general approach for modeling OpenMP single is
similar to the naive approach, that is to not report races on
events from within the same single region. The difference is
in how single regions are identified as being the same. Rather
than relying on LLVM IR, which cannot distinguish two calls
to the same single region in inc, the static program trace can
be used to accurately identify distinct single regions.

They key observation is that both thread traces are created
from the same parallel region. This means that the number
and ordering of single regions on each thread trace will be
identical. The single regions within each thread trace can be
numbered according to the order they are encountered, and
these numbers can be used to determine if two single regions
across threads in the same parallel region are the same.

First, single regions can be identified by recognizing a
pairs of calls to kmpc_single and kmpc_end_single,
marking the start and end of a single region, in the thread
trace. Once a list of single regions has been identified, they
can be numbered according to the order they are encountered
within a given thread trace.

Next, given an event, the single region containing that event
can be identified by checking that the event happens after the
start of a single region and before the end of a single region.
All events within a thread trace are numbered, so this check
can be done as a simple comparison.

The full analysis, given a pair of events, must

1) Number single regions on each thread
2) Identify the single region containing each event
3) Compare the number assigned to each single region

If the numbers match, the events are within the same single
region and no race should be reported.

Analyzing the static program trace provided by the Open-
Race framework allows complex features to be accurately
modelled in a way that is not possible on LLVM IR alone.



B. Other OpenMP Features

A high level description of how other OpenMP features are
modelled in OpenRace is given below.

1) Parallel Region: The start of a parallel region is treated
as a fork event. However, in the generated LLVM IR there
will only be a single kmpc fork call made to the OpenMP
runtime. The runtime will then spawn a team of threads to
execute the parallel region and wait for all threads to finish
execution before returning.

To model the runtime spawning a team of threads, we
include a preprocessing pass that duplicates each kmpc fork
call. This allows the later analyses to see that in reality multiple
threads will execute the parallel region in parallel. To model
the implicit joins at the end of each parallel region, a pair of
join events is added after each pair of OpenMP fork events
during thread trace construction.

2) Parallel Loops and Array Index Analysis: The core race
detection engine is able to detect when two threads access
the same memory location, but it cannot determine if array
accesses inside of a parallel loop may overlap. We have
developed a custom analysis that first detects if potentially
racing accesses are inside a OpenMP parallel loop, and if those
accesses are on a shared array. When both are true, a custom
array index analysis is performed to determine if the two array
accesses may overlap.

The array index analysis is intra-procedural and largely
based on LLVM’s Scalar Evolution (SCEV). When array
access patterns are perfectly aligned for an access a[i], as
shown in Listing 6, we check whether array index (i.e., i in
a[i]) is the loop index of OpenMP parallel loop (i.e., i below
#pragma omp parallel for). If so, we only report read/write
races, e.g., the race includes the read of a[i+1] and the write
to a[i]. For multi-dimension accesses within nested loops, we
also check that the nested indices are private (i.e., j in #pragma
omp parallel for private(j)), which should be thread-safe.

#pragma omp parallel for
for (i = 1; i < N-1; i++) {
a[i] = a[i+1] + 1;

}

Listing 6. Data race on an array within a parallel loop

3) Master: The master directive ensures that a section of
code will be executed only by the ”master” thread. Different
master sections within the same parallel region are guaranteed
to executed by the same thread, and so they can never race,
however accesses within a master region may still race with
accesses outside the master region. We model OpenMP master
during thread trace construction by only placing events within
a master section on the first thread in an OpenMP parallel
region. This ensures events within master regions will never
race with other events within a master region, but still allows
for races with other code.

4) Section: OpenMP sections allow code to be split into
sections which are each executed by a single thread. In clang,
OpenMP sections are implemented as a switch statement
inside of a parallel for loop where each case is a different
section. This makes sections tricky to model for static analysis.

Based on the guarantee that each section will only be executed
by a single thread, we added an analysis to identify the begin
and end of each section based on the switch target locations
and do not report races where both accesses are within the
same section.

5) Barrier: The barrier construct in OpenMP is a synchro-
nization mechanism that forces all threads to wait until all
threads in the team have reached the barrier. We model barriers
as new type of Barrier synchronization event. When a barrier
event is encountered during happens-before graph construc-
tion, a bidirectional happens-before edge is added between
the barrier events on each thread encountering the barrier.
The bidirectional edges enforce a happens-before relationship
between all events on each thread before the barrier and all
the events on each thread after the barrier.

A

Thread 1

Barrier

C

B

Thread 2

Barrier

D

Fig. 3. Modeling of barriers in happens-before graph

Figure 3 shows an example of a Happens-Before graph with
barriers on each thread. The barrier should enforce that A
and B always happen before C and D. This can be confirmed
observing a path from A to D, meaning A must happen before
D. The same can be seen for B and C. This example shows how
the bidirectional happens-before edge between barrier events
accurately models the behaviour of a barrier.

6) Reduction: OpenMP allows for reduction clauses to be
used with some directives. Reduction clauses allow for some
final value to be computed in parallel from some value local
to each thread. Reduction code is not written by the user, but
directly generated by the compiler when a reduction clause is
encountered. We make the assumption that reduction code will
be race free as it is not written by the user. We model this by
identifying each section of reduction code and not reporting
races where both accesses are within the same reduction.

7) Critical: OpenMP critical ensures only one thread ex-
ecutes some region of code at a time. We model the start of
each critical section as acquiring a global lock and the end of
each critical section as releasing the global lock.

8) Task: OpenMP tasks are only partially supported at the
time of writing. OpenMP tasks represent a section of code
who’s execution can be delayed and executed by any available
thread in the team. This can be modelled by treating a task
as a newly spawned thread. There are a few different task
synchronization constructs to ensure that a task has completed
execution, but by default a task can execute any time after it is
created and before the end of the parallel region. We model this
by tracking all task fork events and adding a corresponding
join event at the end of each parallel region during thread



TABLE III
RESULTS ON DATARACEBENCH

Tool Type TP FP TN FN TSR F1*
Archer dynamic 63 1 80 17 0.936 0.819
Intel Inspector dynamic 71 40 45 8 0.954 0.713
ROMP dynamic 59 11 73 18 1.000 0.808
ThreadSanitizer dynamic 64 1 84 15 0.955 0.838
Coderrect static 72 2 85 9 0.977 0.907
OpenRace static 71 8 78 10 0.971 0.862

trace construction. More complicated task synchronizations
like taskwait, barriers, and more can be modelled in a similar
way. Task synchronizations and other more complex task
features such as taskgroup, taskloop, and task depend have
yet to be fully modelled in OpenRace.

V. EVALUATION

The OpenRace framework is still a work in progress. Even
so, the majority of the most commonly used OpenMP features
have been modelled. Even with incomplete modeling, Open-
Race has achieved very promising results on DataRaceBench.

A. Results on DataRaceBench

DataRaceBench is a suite of micro benchmarks designed to
evaluate the effectiveness of OpenMP data race detection tools
[10], [11]. DataRaceBench version 1.3.2 contains 172 C/C++
micro benchmarks and has published results for a variety of
tools. The results provided by DataRaceBench [13] for Archer,
Intel Inspector, ROMP, ThreadSanitizer, and Coderrect are
shown in Table III along with the current results for OpenRace.
Among these tools, only Coderrect and OpenRace are based
on static analysis.

The number of true positives (TP ) represents the number
of benchmarks that did contain a race on which each tool
reported a race. False positives (FP ) represent cases where
a benchmark did not contain a race but the tool did report a
race. true negatives (TN ), and false negatives (FN ) follow
similar definitions. The test support rate (TSR) shows what
percentage of the benchmarks each tool was able to success-
fully run on. The adjusted F1 score (F1∗) is calculated by
multiplying the test support rate by the F1 score. The F1 score
is equal to 2∗(precision∗recall)/(precision+recall) where
precision = TP/(TP+FP ) and recall = TP/(TP+FN).

Table III shows OpenRace has the second highest Adjusted
F1 score at 0.862, just above Google’s ThreadSanitizer and
just below the closed source Coderrect tool.

Although OpenRace detects only one less true positive and
6 more false positives than Coderrect, there are a number of
cases that can likely be passed after as the efforts to finish
modeling OpenMP features continue. There are at least three
task related cases and three simd related cases that OpenRace
could potentially pass after support for those features has been
added. Likewise, there are at least four task related and two
offloading related false positive cases that could potentially be
handled correctly in the near future.

Overall OpenRace is on track to surpass Coderrect’s
adjusted F1 score and have the best overall score on
DataRaceBench. We plan to use the OpenRace framework as a
base on which to build more powerful program analysis tools.

VI. LIMITATIONS

There are a number of limitations of static analysis that have
yet to be addressed in the OpenRace framework. Two of the
most severe limitations are described below.

A. Path Sensitivity

The path explosion problem is one of the limiting factors for
whole program static analysis. The ability to analyze an entire
program is a huge benefit of static analysis, but distinguishing
between all possible paths of execution through any non-trivial
program is impossible.

OpenRace avoids the path explosion problem by ignoring
paths. By default, all paths are collapsed into a single static
trace and analyzed together. After an initial set of races
is detected, more complex analyses can attempt to try and
determine if the path on which the race occurs is possible.
Even so, infeasible paths are currently a common source of
false positives. More sophisticated analyses may be used in the
future to further reduce the number of false positives reported
along infeasible paths.

B. Indirect Function Calls

Another fundamental limitation of static analysis is the
inability to precisely determine where pointers could point at
run time. This is the root cause of a number of problems in
static analysis, of those the problem with the highest impact
is resolving indirect function calls.

The majority of function calls are essentially hard-coded,
and the function being called can be determined statically.
However, a small fraction of functions are indirect, meaning
the precise location being called is not determined until run
time. Our whole program pointer analysis attempts resolve
these indirect calls, however if any indirect calls are skipped
or the target location cannot be resolved by pointer analysis
a portion of the program is missed resulting in possible false
negatives. If the target location is resolved incorrectly, there
will likely be a large number of false positives. More work is
needed to address indirect function calls.

VII. RELATED WORK

Research on data race detection has spanned multiple
decades. Some of the earliest works formalizing happens-
before was published by Leslie Lamport in the 1970’s [14]. A
number of different techniques and tools have been developed
over the decades since.

Dynamic Tools: Two of the most widely used general
purpose data race detection tools are Helgrind [15] and
Google’s ThreadSanitizer [2]. Both tools combine happens-
before and lockset based dynamic analysis. Another popular
general purpose race detection tool is Intel Inspector [1], which
uses Intel PT [16] to record the program execution trace.



In addition to general purpose race detection tools, there are
also a number of OpenMP specific dynamic tools. Archer [3]
combines a lightweight static analysis pass with ThreadSan-
itizer annotations for the OpenMP run time. An extension
to Archer, SWORD [17], has been proposed to add offline
analysis capable of detecting more data races. Another recent
dynamic tool, ROMP [4] uses an extension of offset-span
labels [18] to efficiently track complex access orderings.

Static Tools: LLOV [7] is a recent static analysis tool
for OpenMP. LLOV uses Polly [19], a polyhedral analysis
framework for LLVM, to verify some OpenMP programs
to be race free. LLOV supports both C/C++ and Fortran
programs. Another OpenMP verification tool, DRACO [6] and
OmpVerify [20] also use polyhedral analyses to verify some
OpenMP programs to be race free. DRACO builds on the
ROSE compiler [21] and focuses on verifying complex parallel
loops. All of the above tools focus on verification of a subset
of OpenMP programs. In general, verification tools work to
prove a section of code as race free, where the OpenRace
framework is geared towards reporting potential races.

The only other recent static analysis tool, that we are
aware of, focusing on whole program static race detection for
OpenMP is our previous work, OMPRacer [8] which has also
been developed into the commercial Coderrect tool [5]. The
core engine of OpenRace is also based on the techniques used
in OMPRacer, but with additional abstraction and extensiblity
allowing for more accurate modeling domain specific features.

VIII. CONCLUSION AND FUTURE WORK

As we are completing OpenMP support in the OpenRace
framework, there are a number of useful additions that can
be built on top of OpenRace. Support for other domains like
GPUs or pthreads can be developed. A light weight dynamic
analysis can be added as a method of confirming race reports
and reducing false positives. A smart ranking system could
potentially be added to rank races by severity. The OpenRace
framework is the foundation on which we plan to develop a
practical data race detection tool for HPC and beyond.
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