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Abstract

Data races are among the worst bugs in software in that they
exhibit non-deterministic symptoms and are notoriously dif-
ficult to detect. The problem is exacerbated by interactions
between threads and events in real-world applications. We
present a novel static analysis technique, O2, to detect data
races in large complex multithreaded and event-driven soft-
ware. O2 is powered by “origins”, an abstraction that unifies
threads and events by treating them as entry points of code
paths attributed with data pointers. Origins in most cases
are inferred automatically, but can also be specified by devel-
opers. More importantly, origins provide an efficient way to
precisely reason about shared memory and pointer aliases.
Together with several important design choices for race

detection, we have implemented O2 for both C/C++ and
Java/Android applications and applied it to a wide range of
open-source software.O2 has found new races in every single
real-world code base we evaluated with, including Linux ker-
nel, Redis, OVS, Memcached, Hadoop, Tomcat, ZooKeeper
and Firefox Android. Moreover, O2 scales to millions of lines
of code in a few minutes, on average 70x faster (up to 568x)
compared to an existing static analysis tool from our prior
work, and reduces false positives by 77%. We also compared
O2with the state-of-the-art static race detection tool, RacerD,
showing highly promising results. At the time of writing,
O2 has revealed more than 40 unique previously unknown
races that have been confirmed or fixed by developers.

CCS Concepts: • Software and its engineering→ Soft-

ware testing and debugging; • Theory of computation

→ Program analysis.
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1 Introduction

Threads and events are two predominant programming ab-
stractions for modern software such as operating systems,
databases, mobile apps, and so on. While the thread vs. event
debate has never ended [44, 66], it is clear that both face
a common problem: threads and events often lead to non-
deterministic behaviors due to various types of race condi-
tions, which are notoriously difficult to find, reproduce, and
debug.

There has been intensive research on race detection ofmul-
tithreaded code. Most successful techniques have been dom-
inated by dynamic analysis [13, 23, 31, 42, 46, 72], notably
Google’s ThreadSanitizer [56]. However, dynamic techniques
face an inherent challenge of performance overhead and
low code coverage. In contrast, static detection techniques
have had only very limited success, notably Facebook’s Rac-
erD [4, 8], despite decades of research [12, 37, 43, 47, 68]. A
crucial reason is that reasoning about races typically requires
sophisticated pointer alias analysis to attain accuracy, which
is difficult to scale.
Races in event-driven programs have attracted much at-

tention in recent years [14, 20–22, 26, 40, 49, 53]. Event-based
races can be more challenging to detect than thread-based
races because most events are asynchronous and the event
handlers may be triggered in many different ways. Moreover,
the difficulty in detecting event-based races is exacerbated
by interactions between threads and events, which are com-
mon in real-world software such as distributed systems. The
state-of-the-art race detectors [4, 8, 56] do not perform well
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C/C++

Java

Thread Event
pthread_create(... *start_rountine, *arg)

new Thread(runnable).run()

handleEvent(*data)

new EventHandler().handle(event)

origin(entry, attr)

Figure 1. An “origin” view of threads and events.

in detecting event-based races, also due to the large space of
casual orders among event handlers and threads.
In this paper, we present O2, a new system for detecting

data races in complex multithreaded and event-driven appli-
cations. We show that conventional thread-sensitive static
analysis (with some tuning and care) is highly effective for
finding races, even more effective than RacerD. A key con-
cept behindO2 are origins, an extended notion of threads and
events that unify them through two parts: 1) an entry point
that represents the beginning of a thread or an event handler,
and 2) a set of attributes that capture additional semantics,
such as thread ID, event type, or pointers to memory objects
that will be used in the thread or event handler. Figure 1
depicts an “origin” view for threads and events in C/C++ and
Java. The origin attributes can be specified or inferred auto-
matically at the origin’s entry point and the allocation site
of the receiver object. We elaborate the design in Section 3.1.

Rather than a straightforward unification, origins enables
origin-sensitive pointer analysis (OPA), in which the conven-
tional call-string-based or object-based context abstractions
are replaced by origins. This has several advantages:
• Functions within the same origin share the same context,
therefore the computation complexity inside an origin
does not grow with the length of the call chain; and
• Computing 𝑘-most-recent calling contexts at every call
site is redundant in many applications [64], e.g., when
determining which objects are local to or are shared by
which threads.
• The crucial origin entry point is preserved, not discarded
as a trivial context in k-limiting [57] when the call stack’s
depth exceeds the context depth 𝑘 .
Meanwhile, compared to conventional thread-based [9,

48, 50, 63] or event-based [6, 25, 27, 39, 70, 71] analyses, the
inclusion of data pointers in origins enables precisely identi-
fying shared- and local-memory accesses by different threads
and events. We develop origin-sharing analysis (OSA), which
uses an origin-sensitive heap abstraction to precisely com-
pute heap objects local to each origin, and objects shared
by each combination of multiple origins. OSA has several
advantages over classical thread-escape analysis. In partic-
ular, besides answering whether an object is shared, OSA
provides detailed information on how the object is shared
across origins, which is needed by race detection.
To illustrate these advantages, consider an example in

Figure 2. To correctly infer that threads T1 (line 5) and T2 (line

6) do not access the same data on line 23, typically, a 𝑘-call-
site analysis (denoted k-CFA) is performed, in which 𝑘 is the
depth of the call chain [59]. Additionally, a call-site-sensitive
heap context is necessary to analyze the object allocation on
line 13. This complexity is shared by 𝑘-object-sensitivity [41]
(denoted k-obj), in which the sequence of subN() functions
are invoked on different receiver objects. With origins, it
suffices to mark the function run() in each thread as an
origin’s entry point. In this way, the allocation on line 13
can be distinguished by an origin unique to its thread. At the
same time, the virtual function act() invoked by each thread
on line 24 can be distinguished by the origin’s data pointers:
s and op1 for T1, and s and op2 for T2. Thus, it can be inferred
that the two threads invoke differentmember functions (from
util() to act()) in classes Op1 and Op2 respectively, which
manage the object that y points to differently. Figure 2(d)
shows a sample OSA output for the example code.
In addition to OPA and OSA, there are a few important

design choices we made in O2 that together make static race
detection highly effective. First, O2’s race detection engine
is highly optimized to achieve scalability and precision. We
construct a static happens-before graph (SHB) and use static
“happens-before” instead of static “may-happen-in-parallel"
as the foundational concept of the analysis. This allows prun-
ing many infeasible race pairs by checking only graph reach-
ability. Second, we develop several sound optimizations that
scale race detection to large code bases, including:
• An efficient representation of origin-local happens-before
relations, which further enables efficient checking and
caching the happens-before relation between memory ac-
cesses;
• A compact representation of locksets, which enables a fast
check of common locks and an efficient cache policy of
the intermediate results;
• A lock-region-based race detection that allows effectively
merging many memory accesses into a representative one,
which reduces the number of race checks significantly.
We implemented O2 for both C/C++ and JVM applications

based on LLVM [36] andWALA [69], and applied it to a large
collection of widely-used mature open-source software. The
results show that O2 is both efficient and precise: it scales to
large programs, being able to analyze millions of lines of code
in a fewminutes, up to 568x faster and reduces false positives
by 77% on average compared to existing static analyses from
our prior work (D4 [35]).
We compared O2 with RacerD (v1.0.0), the most recent

state-of-the-art static data race detector. For the programs
that can be compiled and analyzed by RacerD, O2 achieves
comparable performance while detecting many new races
and 4.33x fewer warnings on average. In most of the evalu-
ated programs in which O2 detects new races, RacerD either
fails to find the races or cannot run due to compiler errors.
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1  public void foo(){//main thread
2 Obj s = new Obj();//o1
3    Op op1 = new Op1();//o2
4    Op op2 = new Op2();//o3
5    new T(s, op1).run();//o4 → Origin: T1
6    new T(s, op2).run();//o5 → Origin: T2
7  }
8 public class T extends Thread{
9 Obj f; Op op;//super class of Op1 and Op2
10 public T(Obj a, Op b){
11 f = a; op = b; }
12 public void run(){
13 op.util(f, new Obj());//o6
14   } //with origin:⟨o6,T1⟩ and ⟨o6,T2⟩
15 }
16 void util(Obj x, Obj y){
17 sub1(x, y); ...
18 }
19 void sub1(Obj x, Obj y){
20 sub2(x, y); ...
21 }

22 void subN(Obj x, Obj y){
23 y.do_something();
24 act(x, y);}

...

T.run()

Op1.util()

Op1.subN()
Depth: 
N + 2

(c)

Op2.util()

Op2.subN()

foo()

T.<init>()

(b)

O
ri

gi
n:

 T
2

O
ri

gi
n:

 T
1

Specified
by origin
attribute 
op

Separated
by origin 

entry

Op1.act() Op2.act()

T.run()

Op1.util()

Op1.subN()

foo()T.<init>()

Op1.act()

T.run()

Op2.util()

Op2.subN()

T.<init>()

Op2.act()

Origin: Tmain

Objects Accessed by Meaning

⟨o6,T1⟩ T1 Local to Origin T1

⟨o6,T2⟩ T2 Local to Origin T2

⟨o1,Tmain⟩ T1&T2 Allocated by Origin Tmain, 
Shared by Origins T1 and T2

(a) (d)

Figure 2. (a) The example code. (b) The origin-sensitive call graph, where each origin consists of a sequence of calls of arbitrary
length. The origin attributes precisely determine the call chain executed in each origin. (c) The context-sensitive call graph
without origin. (d) A sample origin-sharing analysis (OSA) output.

Surprisingly, O2 found real and previously unknown races
in every single real-world code base we evaluated with. At the
time of writing, O2 has revealed more than 40 unique race
bugs that have been confirmed or fixed by developers, in-
cluding Linux kernel, Redis/RedisGraph, Open vSwitch OVS,
Memcached, Hadoop, ZooKeeper, and the Firefox Android
apps. O2 has been integrated into a commercial static ana-
lyzer. A free version of the tool is available at coderrect.com.

2 Related Work

Thread vs. Event. In their seminal work [28] in the late
seventies, Lauer and Needham compared event-driven sys-
tems with thread-based systems and regarded threads and
events as intrinsically dual to each other. In the mid-1990s,
however, Ousterhout [44] argued against using threads due
to the difficulty of developing correct threaded code. Lee [29]
also noted the lack of understandability and predictability
of multi-threaded code due to nondeterminism and preemp-
tive scheduling. On the other hand, Von Behren et al. [66]
remarked on the “stack ripping” problem of events and ad-
vocated for using threads for their simple and powerful ab-
straction. In Capriccio [67], they used static analysis and
compiler techniques to transform a threaded program into
a cooperatively-scheduled event-driven program with the
same behavior. Adya et al. [5] also backed Von Behren by
noting the question of threads or events as orthogonal to the
question of cooperative or preemptive scheduling.

A key insight behind origins is that there exists an inherent
connection between threads and events: they are both ways

to implement a unit of the application’s functionality, corre-
sponding to a unique origin. By reasoning at a higher level of
abstraction with origins, we can systematically reason about
both threads and events, and leverage such application-level
semantics to develop a scalable and precise static analysis.

Unifying Thread and Event. It is highly desirable to
unify threads and events so that these two models can be
combined to achieve optimal performance on a real envi-
ronment. In fact, for application domains with both heavy
concurrency and intensive I/O such as web and database
servers, a hybrid model of threads and events is often used.
For example, in web servers and mobile applications, I/O and
lifecycle events are used to model network connections and
user interactions, and thread pools are used to handle concur-
rent user requests. Researchers have exploited this direction
at the programming language level, including Scala with
Actors [18] and Haskell [32], to produce a unified concur-
rency model. To fill the missing gap in program analysis, we
propose a novel concept of origins and a static race detection
approach that works uniformly across different components,
regardless of their deployment of threads and events.

Origins and Pointer Analysis Contexts. Origins unify
threads and events as the context to achieve significant
improvements in the pointer analysis scalability and pre-
cision. Using threads as the context in pointer analysis is not
new [9, 48, 50, 63], however, combining them through the
data pointers is new and powerful. Meanwhile, the union of
threads and events is essential to detecting races triggered by
interactions between threads and events. In fact, all the new

coderrect.com
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races we report in Section 5.4 are caused by a combination
of threads and events, which owes to origins. If considering
events only or threads only, or considering them separately,
these races will be missed. In real-world code bases, races
often happen in a complex environment that leverages both
concepts for concurrency. It is not obvious how to capture
them without unifying threads with events. Section 4.2 pro-
vides details of our approach for handling events in Android
apps.
Many dataflow analysis techniques [6, 25, 27, 39, 70, 71]

have been proposed for event-driven programs to model
event lifecycles and event handlers, but they only scale to
hundreds of lines of code. These techniques either com-
promise precision due to unsound treatment of thread in-
teractions or lose scalability due to expensive value-flow
analysis. Other algorithms for multithreaded programs are
not general as they target specific analyses (e.g., escape
analysis and region-based allocation [55], synchronization
elimination [19, 51]), or only work for structured multi-
threading (e.g., Cilk [15, 52]). In addition to using threads
or events, prior research has proposed a variety of ways
to represent contexts such as call-site [57, 58], receiver ob-
ject [41] and type [60]. Recently, selective context-sensitive
techniques [16, 17, 24, 33, 34, 38, 61, 64] have also been pro-
posed. Although much progress has been made, context-
sensitive pointer analysis remains difficult to scale.

Static Race Detection. RacerD, developed at Facebook,
is by far the most successful static race detector [4]. It is reg-
ularly applied to Android apps in Facebook and has flagged
over 2500 issues that have been fixed by developers before
reaching production [8]. RacerD’s design favors reducing
false positives over false negatives through a clever syntacti-
cal reasoning, but it does not reason about pointers and thus
can miss races due to pointer aliases. In contrast, O2 deals
with both Java pointers and low-level pointers in C/C++ such
as indirect function targets and virtual tables. Other classic
static race detection tools (e.g., RacerX [12], RELAY [68])
have various difficulties when applied to modern software.
RacerX contains many heuristics and engineering decisions,
which are difficult to duplicate. RELAY depends on the CIL
compiler front-end, which supports only a subset of C and
has not been actively developed [11]. Technically, RELAY
uses a context- and field-insensitive pointer analysis, a major
source of false positives. String-pattern-based heuristics are
used in RELAY to filter out false aliasing. These heuristics are
effective in reducing false positives, but are only specific to
the code conventions in the target program and are unsound.

3 Origin-Sensitive Analyses

In this section, we first present origins, OPA and OSA. The
use of OPA and OSA enables a more precise pointer analy-
sis and identification of shared- and local-memory accesses
by threads and events. Beyond race detection, OPA and

Table 1. The origin entry points identified by O2.

Threads Event handlers

java.lang.Thread.start() actionPerformed(. . . )
java.lang.Runnable.run() onMessageEvent(. . . )
java.util.concurrent.Callable.call() handleEvent(. . . )
pthread_create(. . . ) onReceive(. . . )
* More details for Android events are in Section 4.2.

OSA can benefit any analysis that requires analyzing point-
ers or ownership of memory accesses, e.g., deadlock, over-
synchronization, and memory isolation. We present O2’s
race detection engine in the next section.

3.1 Automatically Identifying Origins

In general, a program can be divided into many different
origins, each represents a unit of the program’s functionality.
At the code level, an origin is a set of code paths all with
the same starting point (i.e., the entry point) and data point-
ers (i.e., the origin attributes). In this way, origins divide a
program into different sets of code paths according to their
semantics where each origin represents a separate semantic
domain. While origins can be specified by code annotations,
we aim to extract them automatically from common code
patterns in multithreaded and event-driven programs. Our
system identifies two kinds of origins automatically by de-
fault: threads and event handlers. Finding static threads is not
difficult in practice because threads are almost always explic-
itly defined, either at the language level or through common
APIs such as POSIX Threads (Pthreads) and Runnable and
Callable interfaces in Java. Finding event handlers relies
on code patterns such as Linux system call interfaces (all
with prefix __x86_sys_), Android callbacks (onReceive and
onEvent), and popular even-driven frameworks (Node.js and
REST APIs). In cases where threads or events are implicit,
such as customized user-level threads, developers may be
willing to provide annotations to mark origins, since cus-
tomized threads are likely to be an important aspect of the
target application.
For Java and Pthread-based C/C++ programs, we auto-

matically identify the methods in Table 1 as the origin entry
points, which are frequently used to run code in parallel or
handle an event. We then reason about the origin attributes
in order to distinguish different origins with the same entry
point but different data. The origin attributes can be inferred
at two places:

• Origin Allocation is the allocation site of a receiver object of
an origin entry point. The attributes include the arguments
passed to the allocation site. For example, o4 (line 5) is an
origin allocation in Figure 2, which is the receiver object
of the entry point start() of Origin T1. As its arguments,
s and op1 are the origin attributes of T1.
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Table 2.TheOPA rules for Java. Consider the following state-
ments are in method m() with Origin O𝑖 , denoted ⟨𝑚,O𝑖⟩.
The edges→ are in the PAG and⇝ in the call graph.

Statement Points-to Edge & Call Edge

❶ 𝑥 = 𝑛𝑒𝑤 𝐶 () ⟨𝑜,O𝑖 ⟩ → ⟨𝑥,O𝑖 ⟩

❷ 𝑥 = 𝑦 ⟨𝑦,O𝑖 ⟩ → ⟨𝑥,O𝑖 ⟩

❸ 𝑥 .𝑓 = 𝑦
∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩)
⟨𝑦,O𝑖 ⟩ → ⟨𝑜,O𝑘 ⟩.𝑓

❹ 𝑥 = 𝑦.𝑓
∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑦,O𝑖 ⟩)
⟨𝑜,O𝑘 ⟩.𝑓 → ⟨𝑥,O𝑖 ⟩

❺ 𝑥 [𝑖𝑑𝑥] = 𝑦
∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩)
⟨𝑦,O𝑖 ⟩ → ⟨𝑜,O𝑘 ⟩.∗

❻ 𝑥 = 𝑦 [𝑖𝑑𝑥] ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑦,O𝑖 ⟩)
⟨𝑜,O𝑘 ⟩.∗ → ⟨𝑥,O𝑖 ⟩

∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑦,O𝑖 ⟩)
⟨𝑓 ′,O𝑖 ⟩ = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(⟨𝑜,O𝑘 ⟩, 𝑓 )

❼ 𝑥 = 𝑦.𝑓 (𝑎1, ..., 𝑎𝑛) ⟨𝑜,O𝑘 ⟩ → ⟨𝑓 ′𝑡ℎ𝑖𝑠 ,O𝑖 ⟩
//non-origin entry ⟨𝑎ℎ,O𝑖 ⟩ → ⟨𝑝ℎ,O𝑖 ⟩, where 1 ≤ ℎ ≤ 𝑛

⟨𝑓 ′𝑟𝑒𝑡 ,O𝑖 ⟩ → ⟨𝑥,O𝑖 ⟩
add call edge ⟨𝑚,O𝑖 ⟩⇝ ⟨𝑓 ′,O𝑖 ⟩

Compute new origin: O𝑗

⟨𝑖𝑛𝑖𝑡,O𝑗 ⟩ = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(−, 𝑖𝑛𝑖𝑡)
⟨𝑜,O𝑗 ⟩ → ⟨𝑖𝑛𝑖𝑡𝑡ℎ𝑖𝑠 ,O𝑗 ⟩

❽ 𝑥 = 𝑛𝑒𝑤 𝑂 (𝑏1, ..., 𝑏𝑛) ⟨𝑜,O𝑗 ⟩ → ⟨𝑥,O𝑖 ⟩
//origin allocation ⟨𝑏ℎ,O𝑖 ⟩ → ⟨𝑝ℎ,O𝑗 ⟩, where 1 ≤ ℎ ≤ 𝑛

add call edge ⟨𝑚,O𝑖 ⟩⇝ ⟨𝑖𝑛𝑖𝑡,O𝑗 ⟩

∀⟨𝑜,O𝑗 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩)
❾ 𝑥 .𝑒𝑛𝑡𝑟𝑦 (𝑐1, ..., 𝑐𝑛) ⟨𝑒𝑛𝑡𝑟𝑦′,O𝑗 ⟩ = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(⟨𝑜,O𝑗 ⟩, 𝑒𝑛𝑡𝑟𝑦)
//origin entry point ⟨𝑜,O𝑗 ⟩ → ⟨𝑒𝑛𝑡𝑟𝑦′𝑡ℎ𝑖𝑠 ,O𝑗 ⟩

⟨𝑐ℎ,O𝑖 ⟩ → ⟨𝑝ℎ,O𝑗 ⟩, where 1 ≤ ℎ ≤ 𝑛

add call edge ⟨𝑚,O𝑖 ⟩⇝ ⟨𝑒𝑛𝑡𝑟𝑦′,O𝑗 ⟩

• Origin Entry Point may be invoked with parameters, of
which pointers are also included in the attributes. For ex-
ample, onReceive(context, intent) is an entry point of
BroadcastReceiver in Android apps, where intent con-
tains the incoming message and context represents the
environment the message is sent from.

3.2 Origin-Sensitive Pointer Analysis

Interestingly, reasoning about pointers and heap objects can
be done simultaneously with origin-sensitive pointer anal-
ysis (OPA). Pointer analysis typically uses the pointer as-
signment graph (PAG) [30] to represent points-to relations
between pointers and objects. To achieve good precision, the
PAG constructed by OPA is built together with the call graph
(a.k.a. on-the-fly pointer analysis [30]). The key difference
is that the context of pointers in OPA is represented by ori-
gins. The rules of OPA for Java are summarized in Table 2.
A set of similar rules can be inferred for other programming
languages.

1 public static void main(){
//Tmain

2  TA a = new TA();//oa → Ta
3  TB b = new TB();//ob → Tb
4  a.start(); b.start();
5  }
6 Class TA extends T {
7  TA() { super(); ... }
8  }
9 Class TB extends T {
10 TB() { super(); ... }
11 }

12 Class T {
13 Object f; 
14 T() { f = new Object();
//without switch: ⟨of,Tmain⟩
//with context switch:
//⟨of,Ta⟩ and ⟨of,Tb⟩

15 }
16   public void run(){
17     f.do_something();
18   } 
19 }

Figure 3. An example to explain why it is necessary to
switch context at origin allocations.

Intra-OriginConstraints. Statements❶-❼ are inmethod
⟨𝑚,O𝑖⟩, and all the program elements created by them share
the same originO𝑖 to indicate where they are originated from.
For example, the allocated object by statement ❶ is repre-
sented as ⟨𝑜,O𝑖⟩ and assigned to pointer ⟨𝑥,O𝑖⟩, and their
relation is represented by a points-to edge ⟨𝑜,O𝑖⟩ → ⟨𝑥,O𝑖⟩
in the PAG .

An object field pointer is distinguished by the origin of its
receiver object. For statement ❹, each receiver object ⟨𝑜,O𝑘⟩
corresponds to an object field pointer ⟨𝑜,O𝑘⟩.𝑓 that points
to ⟨𝑥,O𝑖⟩. Note that a pointer and its points-to objects may
have different origins, which shows how data flows across
origins.

Although there exists a large body of work that can infer
the content of arrays, analyzing array index idx in statements
❺❻ is statically undecidable and expensive. Hence, we do not
distinguish different array indexes: array objects are modeled
as having a single field ∗ that may point to any value stored
in the array, e.g., 𝑥 [𝑖𝑑𝑥] = 𝑦 is modeled as 𝑥 .∗ = 𝑦. This
model simply captures objects allocated by different origins
that flow to an array without any complex index analysis.
Besides, our algorithm can be easily integrated with existing
array index analysis algorithms with no conflict.

A non-origin entry method call ❼ invokes a target method
f’ within the same origin O𝑖 as its caller, even though its
receiver object ⟨𝑜,O𝑘⟩might be allocated from a different ori-
gin O𝑘 . To determine a virtual call target and its context (e.g.,
the call on line 13 in Figure 2), we use the type of its receiver
object 𝑜 and the origin O𝑖 of which thread/event-handler
executes the target. The target’s origin must be consistent
with its caller’s, regardless of whether it is an entry point or
not.

Inter-Origin Constraints. We switch contexts from cur-
rent origin O𝑖 to a new origin O𝑗 for an origin allocation ❽
and an origin entry point ❾.
Note that, to avoid false aliasing introduced by thread

creations, we analyze every origin allocation in its new ori-
gin instead of its parent origin where it should be executed.
Figure 3 shows two origins (Ta and Tb) allocated in Origin
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Table 3. The time complexity of different pointer analyses.

Analysis

Worst-Case

Complexity

0-context O(𝑝 × ℎ2)
heap O(𝑝3 × ℎ2)
2-CFA + heap O(𝑝5 × ℎ2)
2-obj + heap O(𝑝5 × ℎ2)
1-origin + heap O(𝑝3 × ℎ2)

Tmain. The two origin allocations share the same super con-
structor T(). If we analyze them in their parent origin Tmain,
only one object 𝑜 𝑓 will be allocated for field f on line 14. This
will cause 𝑝𝑡𝑠 (𝑜𝑎 .𝑓 ) = 𝑝𝑡𝑠 (𝑜𝑏 .𝑓 ) = {⟨𝑜 𝑓 ,𝑇𝑚𝑎𝑖𝑛⟩}, which in-
troduces false aliasing. To eliminate such imprecision, OPA
creates two objects, ⟨𝑜 𝑓 ,𝑇𝑎⟩ and ⟨𝑜 𝑓 ,𝑇𝑏⟩, for each f under
each origin by forcing the context switch at origin allocations
on lines 2 and 3.
To identify origin allocations on-the-fly, we check the

type of the allocated object against the classes in Table 1, i.e.,
if it implements interface Runnable or event handler han-
dleEvent(). Context switch on ❽ can efficiently separate
data flows to the same origin constructor but from different
allocation sites, e.g., both op1 and op2 flow to the construc-
tor of T in Figure 2. Specifically, in this example a new and
unique origin O𝑗 is created for this new allocation ⟨𝑜,O𝑗 ⟩.

Both ❽ and ❾ designate the attributes for the new origin
O𝑗 , including constructor arguments (𝑏1, ..., 𝑏𝑛) and method
parameters (𝑐1, ..., 𝑐𝑛), which reveal significant information of
the accessed data and the origin behavior. To reflect the own-
ership, the actual parameters useO𝑖 as their contexts and the
formal ones use O𝑗 . Meanwhile, call edges are added in the
call graph, e.g., ⟨𝑚,O𝑖⟩ ⇝ ⟨𝑖𝑛𝑖𝑡,O𝑗 ⟩ for ❽ and ⟨𝑚,O𝑖⟩ ⇝
⟨𝑒𝑛𝑡𝑟𝑦 ′,O𝑗 ⟩ for ❾.

Wrapper Functions and Loops. In practice, both ❽ and
❾ may be hidden in a wrapper function (e.g., cross-platform
thread wrappers) invoked by multiple call sites. To efficiently
separate such origins, we can extend the entry point of an
origin to also include its k-call-site. In our tools, we set 𝑘=1.
Meanwhile, for an origin allocated in a loop, we always create
two origins with identical attributes but different origin IDs.

K-Origin-Sensitivity. In the same spirit as k-CFA and
k-obj, a sequence of origins can be concatenated, denoted
as k-origin. For example, a method m() can be denoted as
follows:

⟨𝑚, [O1,O2, ...,O𝑘−1,O𝑘 ]⟩
where m() is invoked within Origin O𝑘 that has a parent
origin O𝑘−1, etc. k-origin can further improve the precision
when a pointer propagates across nested origins, and we
observed such cases in many of our evaluated programs (e.g.,
Redis) where thread creations are nested.

Algorithm 1 Origin-Sharing Analysis

1: Global States:
2: 𝑂𝑃𝐴 - origin-sensitive pointer analysis.
3: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ← ∅; ⊲ flag visitedMethods
4: 𝑚 ←𝑚𝑎𝑖𝑛; ⊲ the main method
5: VisitMethod(𝑚);
VisitMethod(𝑚):

6: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠.𝑎𝑑𝑑(𝑚);
7: for 𝑠 ∈𝑚.𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do

8: switch (𝑠)
9: case 𝑥 .𝑓 : ⊲ read/write object field
10: 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ← FindPointsToOrigins(𝑝);
11: for O ∈ 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 do
12: ComputeOriginSharing(𝑠 ,𝑓 ,O,𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒);
13: break;

14: case 𝑥 [𝑖𝑑𝑥]: ⊲ read/write array
15: 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ← FindPointsToOrigins(𝑎);
16: for O ∈ 𝑜𝑟𝑖𝑔𝑖𝑛𝑠 do
17: ComputeOriginSharing(𝑠 ,∗,O,𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒);
18: break;

19: case𝑚(𝑎𝑟𝑔𝑠): ⊲ call a new method
20: for𝑚′ ∈ FindCalleeMethods(𝑚(𝑎𝑟𝑔𝑠)) do
21: if !𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝑠 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑚′) then
22: VisitMethod(𝑚′);
23: break;

24: default: break;

25: end switch

ComputeOriginSharing(𝑠 , 𝑓 , O, isWrite):
26: Input: 𝑠 - the statement;
27: 𝑓 - accessed field (∗ means array access);
28: O - origin;
29: isWrite - true means write and false means read.
30: 𝑊𝑂 ← GetWriteOrigins(𝑠 ,𝑓 );
31: 𝑅𝑂 ← GetReadOrigins(𝑠 ,𝑓 );
32: if isWrite && !𝑊𝑂 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(O) then
33: 𝑊𝑂 .𝑎𝑑𝑑(O);
34: if !isWrite && !𝑅𝑂 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(O) then
35: 𝑅𝑂 .𝑎𝑑𝑑(O);

Time Complexity. Table 3 summarizes the worst-case
time complexity of different pointer analysis algorithms ac-
cording to [65], where p and h are the number of statements
and heap allocations, respectively. The complexity of k-CFA
and k-obj varies according to the context depth 𝑘 . However,
their worst-case complexity can be doubly exponential [54].
The selective context-sensitive techniques [16, 17, 33, 34, 38,
61] are also bounded by the context depth and have the same
worst-case complexity as their corresponding full k-CFA and
k-obj algorithms.

The 1-origin has the same complexity as 1-call-site-sensitive
heap analysis (denoted heap). But the number of operations
is increased linearly by a factor (#O × O%), where #O is the
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number of origins and O% is the ratio between the average
number of statements within an origin and the total number
of program statements. The ratio is small (<10%) for most
applications, according to our experiments in Section 5.

3.3 Origin-Sharing Analysis

Based on OPA, our origin-sharing analysis (OSA) uses an
origin-sensitive heap abstraction and automatically identifies
memory objects shared by different origins. A sample output
is shown in Figure 2(d). A key in OSA is to track the objects
accessed in the code path of each origin by leveraging OPA.
Consistently with OPA, OSA is sound, interprocedural, and
field-sensitive. More importantly, OSA is more scalable than
conventional thread-escape analysis techniques [10, 19, 55]
– it only requires a linear scan of the program statements.

As depicted in Algorithm 1, we traverse the program state-
ments starting from the main entry method. There are three
kinds of statements relevant to OSA:
• For each object field access (statement ❸❹ in Table 2), we
query OPA to find all the possible allocated objects that
the base reference may point to. Each object has an origin
which is represented by its allocation site together with
an origin. For each such origin O, we call the procedure
ComputeOriginSharing(𝑠 , 𝑓 , O, isWrite) to compute if
the field access is shared by multiple origins or not. In
ComputeOriginSharing, we maintain for each access a
set of write origins and a set of read origins, retrieved by
GetReadOrigins and GetWriteOrigins, respectively. If
a field access in a statement is accessed by more than one
origin, and with at least one of them is a write, we mark
the access as origin-shared. For static field accesses, the
procedure is similar except that each static field is directly
encoded into a unique signature including the class name
and the field index.
• For array accesses (statement ❺❻ in Table 2), we handle
array accesses similar to that of object field accesses, but
query about its field ∗ representing all array elements.
• For method invocation statements (statement ❼❽❾ in Ta-
ble 2) (the receiver object is also included in the arguments
args), we use OPA again to determine the possible callee
methods and traverse their statements.
Compared to thread-escape analysis, OSA has the follow-

ing key advantages:
• OSA is more general than thread-escape analysis since an
origin can represent a thread or an event;
• OSA ismore precise than thread-escape analysis. For exam-
ple, static variables (and any object that is reachable from
static variables) are often considered as thread-escaped.
However, certain static variables may only be used by a
single thread. OSA can distinguish such cases.
• While standard thread-escape analysis algorithms do not
directly work for array accesses (because they have no
information about array aliases), OSA can distinguish if an

Table 4. SHB Graph with Origins: the following statements
are in method m() with Origin O𝑖 .

Intra-Origin Happen-before Rules

Statement Intra-Origin Node & HB Edge

❸ 𝑥 .𝑓 = 𝑦 ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩), write(⟨𝑜,O𝑘 ⟩.𝑓 )
❹ 𝑥 = 𝑦.𝑓 ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑦,O𝑖 ⟩), read(⟨𝑜,O𝑘 ⟩.𝑓 )
❺ 𝑥 [𝑖𝑑𝑥] = 𝑦 ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩), write(⟨𝑜,O𝑘 ⟩.∗)
❻ 𝑥 = 𝑦 [𝑖𝑑𝑥] ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑦,O𝑖 ⟩), read(⟨𝑜,O𝑘 ⟩.∗)
❼ 𝑥 = 𝑦.𝑓 (𝑎1, ..., 𝑎𝑛) ∀⟨𝑓 ,O𝑖 ⟩ ∈ 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(⟨𝑦,O𝑖 ⟩, 𝑓 ),

add HB edge: call(⟨𝑓 ,O𝑖 ⟩)⇒ f
first

(⟨𝑓 ,O𝑖 ⟩),
f
last

(⟨𝑓 ,O𝑖 ⟩)⇒ callnext(⟨𝑓 ,O𝑖 ⟩)
 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑 (𝑥){ ∀⟨𝑜,O𝑘 ⟩ ∈ 𝑝𝑡𝑠 (⟨𝑥,O𝑖 ⟩), lock(⟨𝑜,O𝑘 ⟩),

. . . } unlock(⟨𝑜,O𝑘 ⟩)
Inter-Origin Happen-before Rules

Statement Inter-Origin Node & HB Edge

❾ 𝑥 .𝑒𝑛𝑡𝑟𝑦 (𝑐1, ..., 𝑐𝑛) ∀⟨𝑒𝑛𝑡𝑟𝑦,O𝑗 ⟩ ∈ 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(⟨𝑥,O𝑖 ⟩, 𝑒𝑛𝑡𝑟𝑦),
add HB edge: entry(O𝑖 ,O𝑗 )⇒ origin

first
(O𝑗 )

❿ 𝑥 . 𝑗𝑜𝑖𝑛() ∀⟨ 𝑗𝑜𝑖𝑛,O𝑗 ⟩ ∈ 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(⟨𝑥,O𝑖 ⟩, 𝑗𝑜𝑖𝑛),
add HB edge: origin

last
(O𝑗 )⇒ join(O𝑗 ,O𝑖 )

access 𝑎[𝑖] is an origin-shared array object or not through
reasoning about the points-to set of 𝑎.∗.
• OSA also identifies origin-shared reads and writes to pro-
vide fine-grained access information. This is particularly
useful for static race detection and performance optimiza-
tions.

4 Static Data Race Detection

In O2, we model both threads and events statically as func-
tional units, each represented by a static trace of memory
accesses and synchronization operations. Our race detec-
tion engine uses hybrid happens-before and lockset analyses
similar to most prior work on dynamic race detection [45]
(although ours is static). More specifically, our detection rep-
resents happens-before relations by a static happens-before
(SHB) graph [35, 73], which is designed to efficiently com-
pute incremental changes from source code.

We modify the graph with origins as shown in Table 4. We
record the field/array read and write accesses for statements
❸-❻ by creating read and write nodes. For statement ❼, we
create a method call node (call) with two happens-before
(HB) edges (denoted⇒): one points from the call node to the
first node (ffirst) of its target method fwithin the same origin
O𝑖 , the other points from the last node (flast) of ⟨𝑓 ,O𝑖⟩ to the
next node after the call (callnext). Intra-origin HB edges are
created by pointing from one intra-origin node to another
in their statement order.
For lock operation , we create lock and unlock nodes

to maintain the current lockset. For Java programs, we con-
sider synchronized blocks and methods. For C/C++ pro-
grams, O2 currently only considers monitor-style locks (in-
cluding both standard pthread mutexes and customized locks
through configurations). And we aim to support atomics
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(e.g., std::atomic) and semaphores in our future work, by
adding new happens-before rules from different origins to
the atomic/semaphore operations.
For calls to an origin entry point ❾, we create an origin

entry node (entry) to represent the start of a new origin O𝑗

from its parent origin O𝑖 . And we add an inter-origin HB
edge pointing to the first node (originfirst) of O𝑗 . For thread
join statement ❿, we create a join node (join) to indicate the
end of O𝑗 that finally joins to O𝑖 . An inter-origin HB edge is
created from the last node (originlast) of current origin (O𝑗 )
to the join node.

Existing static race detection (such as [73]) typically checks
each pair of two conflict accesses from different threads: run
a depth-first search (or breadth-first search) starting from
one access and vice versa to check their happens-before re-
lation on the SHB graph, and compute the locksets for both
accesses to check whether they have common lock guards.

However, the efficiency is limited by the redundant work
in graph traversals and lockset retrievals for all pairs of
memory accesses. The straw man approach cannot scale to
real-world programs which can generate large SHB graphs
with millions of memory accesses.

4.1 Three Sound Optimizations

To address the performance challenges, we develop the fol-
lowing sound optimizations:

Check Happens-Before Relation. We only create inter-
origin HB edges in the SHB graph. Instead of creating intra-
origin HB edges, we assign a unique integer ID to each node,
which is monotonically increased during the SHB construc-
tion. Therefore, we convert the traversal of visiting all intra-
origin nodes along HB edges to a constant time integer com-
parison.

Check Lockset. Intuitively, a list of locks is associated
with each memory access node in the SHB graph in order to
represent the mutex protection. We observe that the number
of different combinations among mutexes is much smaller
than the number of conflict memory accesses we need to
check. Therefore, we assign each combination of mutexes
(including the empty lockset) a canonical ID and associate
each access node with such an ID. This not only reduces
the memory for storing the SHB graph, but also speeds up
the lockset checking process. All memory accesses with an
identical lockset ID, or different IDs corresponding to over-
lapping locksets, are protected by the same lock(s), and the
intersection of the IDs between two locksets can be cached
for later checks.

Lock-Region-based Race Detection. We observe that a
synchronization block or method often guards a large se-
quence of memory accesses on the same origin-shared ob-
ject(s) (𝑜𝑠 ), which incurs redundant race checking. Instead,
we treat all the memory accesses on 𝑜𝑠 within the same lock

region as a single memory access on 𝑜𝑠 , and check races on
that single access once. This is sound because their happens-
before relations and locksets are exactly the same. This opti-
mization significantly boosts O2’s performance by reducing
the number of memory access pairs for detecting data races.

4.2 Unify Threads with Android Events

Mobile applications are a representative class of modern
software that contains complex interactions between threads
and events. For instance, in Android apps, there are hundreds
of different types of events that can be created from the
Activity lifecycles, callbacks, UI, or the system services [62].
Meanwhile, the app logic may create any number of normal
Java threads and AsyncTask to improve performance.
Keen readers may wonder that O2 may not work well

for mobile apps, since such event-driven applications will
generate a large number of origins. However, as we will show
in our experiments, O2 scales well on Android apps, because
Android apps often have short-duration events that explore
only a small fraction starting from the entry points.

O2 detects data races in Android apps through the follow-
ing treatments. In Android apps, there is no explicit main
method as in other Java programs that can be used as the
analysis entry of O2. Instead, we automatically generate an
analysis harness from the main Activity of every Android
app (i.e., the home screen). The main activity can be iden-
tified by parsing the file AndroidManifest.xml within each
Android apk.

Our tool treats each event handler as an origin entry. Once
we hit a startActivity() or startActivityForResult(),
we create a harness for the activity being started and analyze
the new harness. All lifecycle event handlers are treated as
method calls, while the normal event handlers are viewed
as origin entries in OPA and SHB graph construction. Since
all events are handled by the main thread [2], we protect the
memory accesses within all the event handlers by one global
lock, so that no false positive among event handlers will be
reported by O2.

4.3 Other Implementation Details

Sequential andRelaxedMemoryModels. Different from
sequential consistency, a relaxed memorymodel may reorder
certain reads and writes in the same thread and different
threads may see different orders. O2 works for both sequen-
tial and relaxed memory models. The reason is that the SHB
graph captures inter-origin happens-before relations at syn-
chronization sites, and it does not assume a global ordering
of reads and writes. Hence, our happens-before relations
already relax the ordering constraints for reads and writes
from the same origin.

Cross-Module and External Pointers. For C/C++, O2
always links the IR files into a single LLVM module and per-
forms the analysis based on the whole module. Meanwhile,
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Table 5. Performance comparison on JVM programs (in 𝑠𝑒𝑐.). The left part compares OPA with other pointer analyses. The
right part compares O2 with other race detection algorithms. The slowdown (in red) is normalized with 0-ctx as the baseline.

Pointer Analysis Race Detection

App 0-ctx #O OPA 1-CFA 2-CFA 1-obj 2-obj 0-ctx O2 1-CFA 2-CFA 1-obj 2-obj RacerD

Avrora 13.42 4 15.56 17.81 56.06 50.30 >4h 20.70 17.85/-14% 30.63/0.48x 615.42/29x 1064/50x - 18.36
Batik 7.22 4 9.83 49.28 2606 >4h >4h 14.47 14.93/3% 84.01/4.81x 2648/182x - - 1min12s
Eclipse 5.03 4 6.52 8.43 8.71 11.84 >4h 7.21 8.03/11% 20.35/1.82x 40.36/4.60x 641.38/88x - *
H2 49.95 3 111.37 192.71 1397 >4h >4h 58.13 169.63/192% 263.00/3.52x 3208/54x - - 38.25
Jython 25.77 4 66.34 16.09 58.85 >4h >4h 163.49 537.63/229% 100.35/-0.39x 172.46/0.05x - - 1min47s
Luindex 10.23 3 15.73 16.74 26.38 >4h >4h 14.43 20.19/40% 31.62/1.19x 1634/112x - - 2min39s
Lusearch 5.06 3 5.66 31.60 2384 6.48 6.63 7.09 7.99/13% 33.79/3.77x 2401/338x 8.58/0.21x 15.05/1.12x 2min39s
Pmd 5.50 3 5.75 6.04 8.00 >4h >4h 25.07 13.32/-47% 57.21/1.28x 122.93/3.90x - - 2min15s
Sunflow 3.13 9 5.68 5.08 5.44 5.12 >4h 20.67 26.01/26% 297.05/13x 2408/116x 3007/144x - 14.77
Tomcat 3.77 6 10.18 30.47 2312 5.89 676.59 7.58 16.87/123% 66.48/7.77x 2829/372x 2918/384x 9589/1.3kx 1min31s
Tradebeans 4.96 3 6.05 6.76 7.54 >4h >4h 8.19 12.05/47% 16.49/1.01x 111.80/13x - - 9.38
Tradesoap 6.25 3 7.44 8.33 9.31 >4h >4h 10.22 10.77/5% 24.32/1.38x 149.53/14x - - 9.38
Xalan 31.30 3 35.73 65.51 3922 213.99 >4h 34.71 42.87/24% 79.33/1.29x 5722/164x 3h/305x - 32.87
ConnectBot 2.40 11 5.45 23.85 3513 >4h >4h 2.49 5.57 /124% 23.99/8.63x 3513/1.4kx - - *
Sipdroid 5.80 15 31.48 14.33 3436 >4h >4h 16.02 228.33/1.3k% 40.88/1.55x 3452/215x - - *
K-9 Mail 6.56 23 14.73 30.88 4284 >4h >4h 8.59 19.49/127% 33.32/2.88x 4288/498x - - 4min56s
Tasks 6.90 7 12.72 117.63 8081 >4h >4h 7.10 12.90/82% 117.77/15.59x 8081/1.1kx - - *
FBReader 6.66 15 20.16 45.26 2.97h >4h >4h 7.49 23.33 /211% 52.79/6.05x 3.10h/1.5kx - - *
VLC 5.35 4 46.40 25.40 3235 >4h >4h 5.39 46.44/762% 25.44/3.72x 3235/599x - - *
FireFox Focus 3.84 8 15.46 17.96 >4h >4h >4h 4.08 15.76/286% 18.34/3.50x - - - 2min5s
Telegram 20.82 134 199.79 83.31 >4h >4h >4h 41.76 372.93/793% 171.42/3.10x - - - *
Zoom 36.77 15 148.01 198.59 >4h >4h >4h 37.62 149.01/296% 200.47/4.33x - - - *
Chrome 6.14 34 108.76 18.43 >4h >4h >4h 7.35 111.79/1.4k% 22.72/2.09x - - - *
HBase 41.96 16 494.64 61.75 >4h >4h >4h >4h 1.34h/-66.5% >4h - - - 8min12s
HDFS 29.03 12 102.83 40.35 165.05 >4h >4h >4h 499.53/-28x >4h >4h - - 3min22s
Yarn 416.37 14 603.70 61.42 55.58 >4h >4h >4h 1.7h/-57.5% >4h >4h - - 8min5s
ZooKeeper 14.40 40 33.45 15.32 33.31 >4h >4h >4h 271.20/-53x >4h >4h - - 21.18
"#O": The number of origins detected during the analysis. "-": Time out. "*": RacerD could not run successfully due to compiler errors.

there is always a default origin (starting from the main entry
point), so we do not have to deal with cross-module pointers.
For JVM applications, O2 extends WALA’s ZeroOneCFA to
analyze all bytecode-level pointers loaded by the application
classloader. When a pointer is passed from an external func-
tion call for which the IR file does not exist, we will create
an anonymous object for that pointer.

5 Experiments

We evaluated O2 on a large collection of real-world, widely-
used distributed systems (e.g., ZooKeeper and HBase), An-
droid apps (e.g., Firefox and Telegram), key-value stores (e.g.,
Redis/RedisGraph, Memcached and TDengine), network con-
trollers (Open vSwitch OVS), lock-free algorithms (e.g., cpqueue
and mrlock), as well as the Linux kernel.

5.1 Performance for Java, Android and C/C++

5.1.1 OPA vs Other Pointer Analyses. The left part of
Table 5 summarizes the performance of different pointer
analysis algorithms on the JVM benchmarks, including Da-
capo [7], a collection of popular Android apps and distributed
systems. Overall, OPA significantly outperforms 1-CFA, 2-
CFA, 1-obj and 2-obj by 1x, 152x, 390x and 465x speedup (on

Table 6. Performance comparison on C/C++ benchmarks
(in 𝑠𝑒𝑐.). The slowdown (SD) is normalized with 0-ctx as the
baseline.

App #KLOC Metrics 0-ctx O2 2-CFA

20.4

Time/SD 5.3 5.8/9% 7.5/41%
Memcached #Pointer 8,400 12,883 15,772
(#O = 12) #Object 2,420 2,468 2,765

#Edge 5,395 10,415 17,116

116

Time/SD 9.3 15.0/61% 275.9/28x
Redis #Pointer 44,535 54,690 281,524
(#O = 15) #Object 14,458 14,913 32,401

#Edge 598,981 963,654 13,530,084

245

Time/SD 213 273/28% OOM
Sqlite3 #Pointer 57,657 61,796 -
(#O = 3) #Object 10,093 10,310 -

#Edge 7,909,626 8,879,155 -
Avg. 126 Time/SD 75.8 97.9/30% -

average) respectively, and OPA has only a small performance
slowdown compared to the context-insensitive baseline (de-
noted 0-ctx, 1.76x on average). In particular, the majority
of benchmarks running 1-obj and 2-obj cannot terminate
within 4 hours.
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Table 7. Performance and
#Shared memory accesses
(#S-access) of OSA.

App #S-access Time

Avrora 16 16.72s
Batik 293 7.79s
Eclipse 343 9.22s
H2 2,207 2.3min
Jython 13,121 4.5min
Luindex 2,001 1.6min
Lusearch 252 7.01s
Pmd 300 8.57s
Sunflow 1,603 10.15s
Tomcat 700 15.39s
Tradebeans 45 7.43s
Tradesoap 37 9.12s
Xalan 14 1.2min
Time includes the time of OPA.

Table 8. #Races detected by O2 and D4 utilizing different pointer analyses. The percentages of
reduced races (in red) are normalized with 0-ctx as the baseline. The comparison between O2
and RacerD (v1.0.0) is shown separately on the right, due to different scale.

App 0-ctx O2 1-CFA 2-CFA 1-obj 2-obj O2 RacerD

Avrora 12,633 38/99.7% 45/99.6% 45/99.6% 47/99.6% - 38 117
Batik 4,369 186/95.7% 4,229/3.2% 640/85.4% - - 186 1,562
Eclipse 958 7/99.3% 944/1.5% 822/14.2% 945/1.4% - 7 *
H2 9,698 2,817/71.0% 7,832/19.2% 6,322/34.8% - - 2,817 6,743
Jython 7,997 3,651/54.3% 2,402/70.0% 2,358/70.5% - - 3,651 52,872
Luindex 3,218 1,792/44.3% 2,821/12.3% 2,271/29.4% - - 1,792 172
Lusearch 567 341/39.9% 538/5.1% 494/12.9% 529/6.7% 526/7.2% 341 172
Pmd 307 256/16.6% 296/3.6% 293/4.6% - - 256 1
Sunflow 9,238 1,925/79.2% 6,868/25.7% 5,899/36.1% 2,288/75.2% - 1,925 69
Tomcat 751 307/59.1% 701/6.7% 693/7.7% 585/22.1% 575/23.4% 307 3,257
Tradebeans 193 75/61.1% 171/11.4% 168/13.0% - - 75 90
Tradesoap 264 64/75.8% 179/32.2% 177/33.0% - - 64 90
Xalan 6 1/83.3% 6/0.0% 6/0.0% 6/0.0% - 1 754
"-": Time out.

Note that the number of origins (denoted #O) in the eval-
uated Android apps is significantly larger than that in the
other JVM applications, up to over a hundred origins in Tele-
gram. However, OPA is still highly efficient, finishing in a few
minutes in the worst case. Compared to the other algorithms,
the performance of origin-sensitivity is comparable to 1-CFA
(but much more precise by identifying thread-/event-local
points-to constraints) and several orders of magnitude faster
than 2-CFA, 1-obj and 2-obj.
The scalability of k-obj [41] and k-CFA [58] varies de-

pending on the code. For most benchmarks, more objects
are allocated when running k-obj than k-CFA, e.g., 2-CFA
allocates 3357 objects for Tomcat, while 2-obj allocates 20679.
Meanwhile, opposite cases exist, e.g., Avrora has 7369 objects
for 1-CFA and 5848 for 1-obj.
Table 6 reports the performance for three C/C++ appli-

cations (Memcached, Redis and Sqlite3). OPA achieves upto
17x speedup over 2-CFA on Redis while only incurring 30%
slowdown compared with 0-ctx. Moreover, 2-CFA got killed
when running on Sqlite3 due to out of memory (OOM, 32GB)
while OPA only imposes 28% slowdown. We note that O2
detected numerous real races in all these three applications.
We will elaborate the case of Memcached in Section 5.4.

5.1.2 OSA vs Escape Analysis. We compared OSA with
an open-source escape analysis TLOA [19], which is in-
tegrated in the state-of-the-art static analysis framework
Soot [1]. TLOA uses context-sensitive information flow anal-
ysis to decide whether a field can be accessed by multiple
threads. Table 7 reports the number of thread-shared ac-
cesses for each benchmark computed by OSA, which has the
same setting with the evaluation of OPA. OSA completes
in 51s on average, while TLOA could not finish within the
time limit for all the benchmarks. We further excluded JDK
libraries and the benchmark-specific dependencies (e.g., antlr

and asm for Jython). However, TLOA only finishes the anal-
ysis for Avrora in 90s, which generates an imprecise report
with no thread-escape accesses. For the other benchmarks,
TLOA still cannot finish within one hour, which is over 70x
(on average) slower than OSA.

5.1.3 Race Detection Performance. The right part of
Table 5 reports the performance for race detection includ-
ing the time of running the corresponding pointer analysis.
In summary, O2 achieves 70x speedup on average over the
other context-sensitive detections. Among them, the most
speedup (1461x on detection and 568x in total) is on Tom-
cat when comparing with 2-obj. Compared to 0-ctx, O2 is
only 2.81x slower on average, and it is even faster for some
applications (Avrora and Pmd), due to the much improved
precision of origin-shared memory accesses.

O2 vs RacerD. We also compared O2 with RacerD (from
the latest release Infer v1.0.0) in Table 5. RacerD did not
complete the detection for 9 out of the 27 benchmarks, due
to dependency limitation of the benchmark or compilation
errors. For example, Eclipse has a complex building proce-
dure, Sipdroid requires Android command which RacerD
does not support, and other Android benchmarks involve
legency SDK that could not be resolved. O2 (69s on average)
and RacerD (71s on average) have similar performance on
Dacapo benchmarks, while RacerD is 90% slower on average
on the two Android benchmarks (i.e., K-9 Mail and Firefox
Focus). For the four distributed systems,O2 (48min, including
the execution of a whole program pointer analysis), has 9.6x
slowdown on average comparing with RacerD (5min). We
also tested RacerD on the three C/C++ programs in Table 6.
However, RacerD could not run successfully on Memcached
and Redis, and it reports no violations on Sqlite3.
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Table 9. #Races and #Thread-shared objects (#S-obj) from
different pointer analyses for distributed systems.

#Race #S-obj

App O2 RacerD 0-ctx 1-CFA 2-CFA O2

HBase 687 727 1,269 1,799 - 903
HDFS 910 884 2,322 3,139 6,605 1,066
Yarn 1,164 1,246 5,387 3,083 2,146 1,162
ZooKeeper 747 407 1,389 2,511 4,299 1,271
"-": Time out.

5.2 Precision of Origin-Sensitivity and O2

Tables 8 and 9 report the number of detected races with dif-
ferent pointer analyses. We use the number of reported races
as the metric to evaluate the end-to-end precision of different
analyses. The baseline is the open-source tool developed in
D4 [35], which utilizes the points-to result from 0-ctx for
static race detection.
In summary, O2 reduces warnings by 77% on average,

while 1- and 2-CFA reduce 46% and 60%, and 1- and 2-obj
reduce 35% and 19% respectively. For the majority of bench-
marks, O2 reports significantly fewer races, e.g., Eclipse. For
other benchmarks, O2 is much faster to achieve a similar
precision. For example,O2 reports 38 races forAvrora, both 1-
and 2-CFA report 45 races, and 1-obj reports 47 races (while
being 60x slower than O2).

O2 vs RacerD. RacerD reports two types of thread safety
violations in the evaluated benchmarks: (1) read/write races,
and (2) unprotected write violations where a field access at
a program location is outside of synchronization. To per-
form a fair comparison, we translate the violations in the
RacerD report to a number of potential races: we add up
the numbers of read/write races and of the pairs of conflict
field accesses shown in unprotected writes. For distributed
systems, we report the detected races in Table 9, since all the
other context-sensitive detections run out of time (>4h).

On average, O2 reports 4.33x fewer warnings compared to
RacerD (reduces false positives by 82% from Table 8). O2 de-
tects new races in FireFox Focus, TDengine, OVS, Memcached
and Redis; while RacerD either reports no races or cannot
complete its detection on those programs. The majority of
false positives reported by O2 are due to infeasible paths,
which is inherent to static analysis tools.

5.3 Trade-Off between Precision and Performance

Our results show that O2 significantly outperforms k-CFA
and k-obj (𝑘 ≤ 2) in terms of both performance and precision
(Table 5). The reason for the improved precision is that the
use of origins as context significantly improves the analysis
precision on the thread- and event-local objects that are
created within an origin. Such origin-local objects would be
falsely analyzed as shared by k-CFA or k-obj if k is smaller
than the depth of the call chain inside the thread or event,

whereas such objects can be correctly analyzed as thread-
local by O2.
The performance of OPA has obvious slowdown on the

distributed systems: the max slowdown is 9.86x on Yarn com-
pared with 2-CFA. However, its corresponding total time of
race detection is at least 57% faster (up to 53x on ZooKeeper).
The reason behind this significant speedup is the largely re-
duced number of thread-shared objects as shown in Table 9,
which means less workload in both checking happens-before
relations and computing common locksets.

5.4 New Races Found in Real-World Software

O2 has detected new races in every real-world code base we
tested on, as summarized (partially) in Table 10. Most of them
are due to a combination of threads and events. If considering
events only or threads only, or considering them separately,
these races will be missed. In the following, we elaborate
the races found in several high-profile C/C++, Android apps,
and distributed systems.

LinuxKernel. We evaluatedO2 on the Linux kernel (com-
mit 5b8b9d0c as of April 10th, 2020), compiled with tiny-
config64, clang/LLVM 9.0. We define four types of origins:
system calls with function prefix: __x64_sys_xx, driver func-
tions over file operations (owner, llseek, read, write, open,
release, etc), kernel threads with origin entries kthread_-
create_on_cpu() and kthread_create_on_node(), and in-
terrupt handlers with origin entries request_threaded_-
irq() and request_irq()). There are 398 system calls in-
cluded in our build. For each system call, we create two
origins representing concurrent calls of the same system call,
and a shared data pointer if the system call has a parameter
that is a pointer (e.g., __x64_sys_mincore). In total, 1090
origins are created, including 796 from system calls and 294
from others.
In total, O2 detects 26 races in less than 8 minutes. We

manually inspected all these races and confirmed that 6 are
real races, 7 are potential races, and the other 13 are false
positives. The 6 real races are all races to the linux kernel
bugzilla, and all of them have been confirmed at the time of
writing. The 7 potential races are difficult tomanaully inspect
due to very complex code paths involving the races. For the
false positives, a majority of them are due to mis-recognition
of spinlocks (such as arch_local_irq_save.38) or infeasi-
ble branch conditions which O2 does not handle. The code
snippet below shows a real bug found by O2, which detects
concurrent writes on the same element of array vdata (with
array index CS_HRES_COARSE).
1 void update_vsyscall_tz(void){//in class time.vsyscall
2 struct vdso_data *vdata = __arch_get_k_vdso_data ();
3 vdata[CS_HRES_COARSE ]. tz_minuteswest = sys_tz.

tz_minuteswest; //RACE
4 vdata[CS_HRES_COARSE ]. tz_dsttime = sys_tz.tz_dsttime;

//RACE
5 ... }



PLDI ’21, June 20–25, 2021, Virtual, Canada Bozhen Liu*, Peiming Liu*, Yanze Li, Chia-Che Tsai, Dilma Da Silva, and Jeff Huang

Table 10. New Races Detected by O2 (Confirmed by Developers).

Linux TDengine Redis/RedisGraph OVS cpqueue mrlock Memcached Firefox ZooKeeper HBase Tomcat

#Races 6 6 5 3 7 5 3 2 1 1 1

In addition, we found that among the 71459 allocated ob-
jects by the kernel (within the configured origins), 329 of
them are origin-shared. And 1051 accesses are on origin-
shared memory locations from a total of 36321 memory ac-
cesses. The result indicates that the majority of memory
used by the kernel is origin-local, which can be beneficial to
region-based memory management.

We also discovered that the system call paths do not create
any new kernel threads or register interrupts. However, dri-
ver functions can do both operations. For example, the driver
of GPIO requests a thread to read the events by the kernel
API request_threaded_irq 1. And the interrupt requests
can create kernel threads by API kthread_create 2.

Memcached. Memcached is a high performance multi-
threaded event-based key/value cache store widely used in
distributed systems. We applied O2 to commit 14521bd8 (as
of May 12th, 2020). O2 is able to finish analyzing memcached
within 5s, and reports 16 new races in total. All these races
are previously unknown. We manually confirmed that 11
of them are real and the rest of them are potential races. A
majority of the real races are on variables such as stats,
settings, time_out, or stop_main_loop. There are also
three races that are not on these variables but look more
harmful. We reported the three races to the developers and
all of them have been confirmed. The other five potential
races all involve pointer aliases on queued items.

One of the reported races is shown below with the simpli-
fied code snippet:
1 void *do_slabs_reassign (){ ... //event
2 if (slabsclass[id].slabs > 1){
3 return cur;//RACE: missing lock
4 }}
5 void *do_slabs_newslabs (){ ... // thread
6 pthread_lock ();
7 p->slab_list[p->slabs ++] = ptr;//with lock
8 pthread_unlock () ... }

The listed bug is related toMemcached’s slab-base memory
allocation, which is used to avoid memory fragmentation
by storing different objects using different slab classes based
on their size. Since the accesses in the event handler is not
protected by the lock, there is a data race between the event
handler and all the running threads that try to allocate new
slabs. Although another lock-protected check on the same
variable is made later in the function, the data race can still
lead to undefined behaviors. This case is interesting as it
shows that unlike previous tools, which only reason about
inter-thread races, O2 is able to unify events and threads to

1/linux-stable/drivers/gpio/gpiolib.c@1104:8
2/linux-stable/kernel/irq/manage.c@1279:7 and @1282:7

find races in complex programs that leverage both concepts
for concurrency.

FireFox Focus. O2 was able to finish in 15s on FireFox
Focus 8.0.15 (a privacy-focused mobile browser), and de-
tected two previously unknown bugs (both reported in Bug-
1581940) confirmed by developers from Mozilla. A simplified
code snippet is presented below:
1 // called from Gecko background thread
2 public synchronized IChildProcess bind(){ ...
3 Context ctx = GeckoAppShell.getAppCtx ();//RACE
4 ... }
5 // called from MainActivity.onCreate ()
6 @UiThread
7 public void attachTo(Context context){ ...
8 Context appCtx = context.getAppCtx ();
9 if(! appCtx.equals(GeckoAppShell.getAppCtx ())){
10 GeckoAppShell.setAppCtx(appCtx);//RACE

The code involves both FireFox Focus and FireFox’s browser
engine, Gecko. Upon the app initialization, GeckoAppShell.g
etAppCtx() and GeckoAppShell.setAppCtx(appCtx) are
called without synchronizations, one fromAndroid UI thread
(through onCreate event handler), the other from Gecko en-
gine’s background thread. Although in reality, the creation
order between UI thread and Gecko background thread keeps
the race from happening, it is possible for Gecko engine to
read an uninitialized application context thus leads to crash.

Distributed Systems. We discovered two new races in
ZooKeeper 3.5.4 (reported in ZOOKEEPER-3819) and HBase
2.8.0 (reported in HBase-24374). O2 takes 4.5min to detect
the new race in ZooKeeper by analyzing 40 threads and 88
events. The related code is shown below:
1 //in class org.apache.zookeeper.server.DataTree
2 public void createNode (..., long ephemeralOwner){ ...
3 HashSet <String > list =ephemerals.get(ephemeralOwner);
4 if (list == null){ list = new HashSet <String >();
5 ephemerals.put(ephemeralOwner , list); }
6 synchronized (list) {//RACE
7 list.add(path); } ...
8 }
9 public void deserialize(InputArchive ia, String tag){
10 HashSet <String > list = ephemerals.get(eowner);
11 if (list == null){ list = new HashSet <String >();
12 ephemerals.put(eowner , list); }
13 list.add(path);//RACE: missing lock

These races are caused by interactions between threads
and requests. ephemerals is a map in class DataTree to store
the paths of the ephemeral nodes of a session. It is possible
that a request of creating nodes for a session might arrive
together with another request to deserialize the same session,
and both requests are handled by different server threads
(with super type ZooKeeperServer). The lock protection is
missing on variable list on line 22, hence both threads can add
paths concurrently to ephemerals. A worse case is that the
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two code snippets (line 4-7 and line 10-13) are not protected
by common locks or mechanism from ConcurrentHashMap.
Hence, the null checks from two threads on variable list
may return null, but only one initialized set can be stored
in ephemerals and all the paths added by another thread are
missing. The race in HBase has the same reason as above, in-
volving two concurrent accesses on a map, keyProviderCache,
without locks from method getKeyProvider() (in class
org.apache.hadoop.hbase.io.crypto.Encryption).

6 Conclusion and Future Work

We have presentedO2, a new system for static race detection.
O2 is powered by a novel abstraction, origins, that unifies
threads and events to effectively reason about shared mem-
ory and pointer aliases. Our extensive evaluation with Java
and C/C++ programs demonstrates the potential of O2, find-
ing a large number of new races in mature open-source code
bases and achieving dramatic performance speedups and
precision improvement over existing static analysis tools. O2
has been integrated into Coderrect, a commerical static ana-
lyzer [3]. In future work, we plan to implement and evaluate
O2 for other languages such as Golang, C# and Rust.
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